Key Insights
The global waste-to-energy (WtE) market is experiencing robust growth, projected to reach \$38.37 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 11.22% from 2025 to 2033. This expansion is driven by several key factors. Increasing urbanization and industrialization lead to a surge in waste generation, creating an urgent need for sustainable waste management solutions. Furthermore, stringent environmental regulations globally are pushing governments and businesses towards cleaner energy sources and reducing landfill dependency. The rising cost of landfill disposal further incentivizes the adoption of WtE technologies, making them a financially viable alternative. Technological advancements in WtE, particularly in improving energy efficiency and reducing emissions, are also contributing to the market's growth. The growing focus on circular economy principles and the potential for WtE to generate renewable energy are further bolstering market expansion. Different WtE technologies, including physical, thermal, and biological processes, cater to diverse waste streams and regional contexts, offering flexibility and adaptability.
Geographical distribution shows significant variations, with North America and Europe currently holding substantial market share due to established infrastructure and supportive policies. However, rapid industrialization and economic growth in Asia-Pacific are fueling significant market expansion in this region, creating substantial future opportunities. Competition within the WtE sector is intense, with a range of multinational corporations and regional players vying for market share. These companies are focusing on strategic acquisitions, technological innovation, and geographical expansion to strengthen their market position. Despite the optimistic outlook, challenges remain, including high initial capital investment costs associated with WtE infrastructure development and public perception concerns regarding potential environmental impacts. However, continuous technological advancements, supportive government initiatives, and increasing public awareness regarding the environmental benefits of WtE are expected to mitigate these challenges and propel further market growth in the forecast period.

Waste to Energy Industry Market Report: 2019-2033
This comprehensive report provides a detailed analysis of the global Waste to Energy industry, offering invaluable insights for investors, industry professionals, and strategic decision-makers. With a study period spanning 2019-2033, a base year of 2025, and a forecast period of 2025-2033, this report leverages historical data (2019-2024) to project future market trends and growth opportunities within the Waste-to-Energy sector. The report covers key market segments, including Physical, Thermal, and Biological technologies, and profiles leading players such as Covanta Holding Corp, A2A SpA, and China Everbright Group, providing a 360-degree view of this dynamic market. Expected market value is xx Million USD.
Waste to Energy Industry Market Structure & Competitive Dynamics
The global waste-to-energy market is characterized by a moderately concentrated structure, with a few large multinational companies holding significant market share. Competition is fierce, driven by technological innovation, stringent environmental regulations, and the increasing need for sustainable energy solutions. Market share is largely influenced by technological capabilities, geographical reach, and project execution expertise. While precise market share figures for individual companies vary and require further specific data analysis, leading players often collaborate on projects, sometimes forming joint ventures or consortiums. The market shows ongoing M&A activity, with deal values reaching hundreds of Millions of USD in recent years. For example, the acquisition of smaller waste management companies by larger players to expand geographical reach and service offerings has been prevalent. This activity significantly impacts the market landscape and competitive dynamics. Regulatory frameworks, varying significantly by region, are key drivers of market structure. These frameworks influence waste management practices, technological preferences, and investment decisions. Furthermore, increasing consumer awareness of environmental issues contributes to the demand for sustainable waste management solutions, benefiting companies with strong environmental credentials. The availability of substitutes, such as landfill disposal, impacts market growth, as landfills provide a less expensive, although less environmentally friendly, alternative.
Waste to Energy Industry Industry Trends & Insights
The waste-to-energy market is experiencing robust growth, driven by several key factors. Stringent regulations aimed at reducing landfill waste and promoting renewable energy sources are fostering market expansion. The rising global population and increasing urbanization are generating greater volumes of waste, creating a significant demand for efficient waste management solutions. Technological advancements, particularly in waste pre-treatment and energy conversion, are improving the efficiency and cost-effectiveness of waste-to-energy plants. The industry is witnessing a shift towards more sustainable and environmentally friendly technologies, with a focus on reducing emissions and maximizing energy recovery. The Compound Annual Growth Rate (CAGR) for the forecast period (2025-2033) is estimated to be xx%, indicating strong market expansion. Market penetration of waste-to-energy technologies is increasing gradually, particularly in regions with stricter environmental regulations and limited landfill capacity. Competitive dynamics are shaped by technological innovation, project financing capabilities, and operational efficiency. Consumer preferences are shifting towards environmentally responsible waste management practices, driving demand for advanced waste-to-energy solutions. The focus is moving from merely disposing of waste to actively recovering energy and valuable resources.

Dominant Markets & Segments in Waste to Energy Industry
The European Union is currently a leading region in the waste-to-energy market, driven by stringent environmental regulations and significant government investments. Countries like Germany, Sweden, and Denmark have highly developed waste-to-energy infrastructures.
- Key Drivers in Europe:
- Stringent environmental policies promoting renewable energy.
- Well-established waste management infrastructure.
- High public awareness and acceptance of waste-to-energy technologies.
- Significant government funding and incentives for waste-to-energy projects.
Within the technology segments, Thermal technologies (incineration with energy recovery) currently hold the largest market share globally due to their established infrastructure and mature technology. However, Biological technologies (e.g., anaerobic digestion) are gaining traction due to their environmental benefits and potential for biogas production. Physical technologies, while utilized in pre-processing stages, have a smaller direct contribution to energy generation. The dominance of Thermal technology is rooted in its proven efficacy and scalability, while Biological technologies are seen as a promising growth area with future market potential, particularly in niche applications.
Waste to Energy Industry Product Innovations
Recent product innovations focus on improving energy efficiency, reducing emissions, and enhancing resource recovery. Advanced incineration technologies, such as fluidized bed combustion and gasification, offer improved energy conversion and reduced pollutant emissions. Simultaneously, developments in waste pre-treatment technologies, like advanced sorting and mechanical biological treatment, are improving the quality of waste feedstock for energy generation. These innovations improve the overall efficiency and economic viability of waste-to-energy plants, and enhance their market fit.
Report Segmentation & Scope
This report segments the waste-to-energy market by technology:
Physical: This segment involves mechanical processes for waste sorting and pre-treatment, improving the efficiency of subsequent energy conversion processes. The market size for physical technologies is estimated to be xx Million USD in 2025, with a projected CAGR of xx% during the forecast period. Competitive dynamics are centered on efficiency and cost-effectiveness of equipment.
Thermal: This segment dominates the market, encompassing incineration with energy recovery. Market size for thermal technologies is xx Million USD in 2025, with a projected CAGR of xx% during the forecast period. Competition is influenced by technological advancements, emission control capabilities, and overall plant efficiency.
Biological: This segment focuses on anaerobic digestion and other biological processes to generate biogas and biofuels. The market size for biological technologies is estimated at xx Million USD in 2025, with a projected CAGR of xx% during the forecast period. This segment shows strong growth potential, driven by its environmental benefits.
Key Drivers of Waste to Energy Industry Growth
Several key factors drive the growth of the waste-to-energy industry. Increasing environmental regulations globally are pushing for reduced landfill reliance and promoting sustainable waste management practices. The growing need for renewable energy sources is creating a strong demand for waste-to-energy as a sustainable power generation solution. Technological advancements, leading to greater efficiency and lower emissions, are making waste-to-energy a more attractive option. Government incentives and subsidies, particularly in regions aiming to achieve carbon neutrality goals, further stimulate market expansion. The rising cost of landfill disposal is pushing municipalities and industries towards more economical waste management alternatives.
Challenges in the Waste to Energy Industry Sector
Despite its growth potential, the waste-to-energy industry faces several challenges. Public perception and concerns about emissions remain a significant hurdle, requiring robust emission control technologies and transparent communication. The high capital investment required for waste-to-energy plants can be a barrier for smaller companies or municipalities. Fluctuations in waste composition and quality can affect plant efficiency and require robust pre-treatment processes. Furthermore, competition from other waste management solutions, like recycling and anaerobic digestion, creates competitive pressures. Stricter regulatory compliance requirements add to operational costs and necessitate ongoing investments in emission control and resource recovery technologies.
Leading Players in the Waste to Energy Industry Market
- Covanta Holding Corp
- A2A SpA
- China Everbright Group
- Wheelabrator Technologies Holdings Inc
- Martin GmbH
- Hitachi Zosen Corp
- Suez Group
- China Jinjiang Environment Holding Co Ltd
- Veolia Environnement SA
- Waste Management Inc
- Babcock & Wilcox Enterprises Inc
- Xcel Energy Inc
- MVV Energie AG
- Mitsubishi Heavy Industries Ltd
Key Developments in Waste to Energy Industry Sector
January 2023: Lostock Sustainable Energy Plant awarded Babcock & Wilcox a USD 65 Million contract for a waste-to-energy plant near Manchester, UK, with a capacity of over 60 MW and processing 600,000 metric tons of waste annually. This highlights the growing investment in large-scale waste-to-energy projects.
April 2023: Egypt signed a USD 120 Million contract for its first solid waste-to-electricity facility in Abou Rawash, Giza, with a capacity of 1,200 metric tons of waste per day. This signifies a significant step towards sustainable waste management in developing countries.
Strategic Waste to Energy Industry Market Outlook
The waste-to-energy market is poised for continued strong growth, driven by increasing environmental concerns, stringent regulations, and the growing need for renewable energy. Strategic opportunities exist in developing advanced technologies for waste pre-treatment, emission control, and resource recovery. Expansion into emerging markets, particularly in Asia and Africa, presents significant potential for growth. Companies focusing on innovation, sustainability, and efficient project execution are well-positioned to capitalize on the future market potential. The long-term outlook is positive, with increasing adoption of waste-to-energy technologies as a sustainable solution for waste management and energy production.
Waste to Energy Industry Segmentation
-
1. Technology
- 1.1. Physical
- 1.2. Thermal
- 1.3. Biological
Waste to Energy Industry Segmentation By Geography
-
1. North America
- 1.1. United States
- 1.2. Canada
- 1.3. Rest of North America
-
2. Asia Pacific
- 2.1. China
- 2.2. India
- 2.3. Japan
- 2.4. Malaysia
- 2.5. Thailand
- 2.6. Indonesia
- 2.7. Vietnam
- 2.8. Rest of Asia Pacific
-
3. Europe
- 3.1. Spain
- 3.2. Nordic
- 3.3. United Kingdom
- 3.4. Russia
- 3.5. Turkey
- 3.6. Germany
- 3.7. Italy
- 3.8. Rest of Europe
-
4. Middle East and Africa
- 4.1. United Arab Emirates
- 4.2. Saudi Arabia
- 4.3. South Africa
- 4.4. Nigeria
- 4.5. Qatar
- 4.6. Egypt
- 4.7. Rest of Middle East and Africa
-
5. South America
- 5.1. Brazil
- 5.2. Argentina
- 5.3. Colombia
- 5.4. Rest of South America

Waste to Energy Industry REPORT HIGHLIGHTS
Aspects | Details |
---|---|
Study Period | 2019-2033 |
Base Year | 2024 |
Estimated Year | 2025 |
Forecast Period | 2025-2033 |
Historical Period | 2019-2024 |
Growth Rate | CAGR of 11.22% from 2019-2033 |
Segmentation |
|
Table of Contents
- 1. Introduction
- 1.1. Research Scope
- 1.2. Market Segmentation
- 1.3. Research Methodology
- 1.4. Definitions and Assumptions
- 2. Executive Summary
- 2.1. Introduction
- 3. Market Dynamics
- 3.1. Introduction
- 3.2. Market Drivers
- 3.2.1 4.; Increasing Amount of Waste Generation
- 3.2.2 Growing Concern for Waste Management to Meet the Needs for Sustainable Urban Living4.; Increasing Focus on Non-fossil Fuel Sources of Energy
- 3.3. Market Restrains
- 3.3.1. 4.; Expensive Nature of Incinerators
- 3.4. Market Trends
- 3.4.1. Thermal-based Waste-to-Energy Segment to Dominate the Market
- 4. Market Factor Analysis
- 4.1. Porters Five Forces
- 4.2. Supply/Value Chain
- 4.3. PESTEL analysis
- 4.4. Market Entropy
- 4.5. Patent/Trademark Analysis
- 5. Global Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 5.1. Market Analysis, Insights and Forecast - by Technology
- 5.1.1. Physical
- 5.1.2. Thermal
- 5.1.3. Biological
- 5.2. Market Analysis, Insights and Forecast - by Region
- 5.2.1. North America
- 5.2.2. Asia Pacific
- 5.2.3. Europe
- 5.2.4. Middle East and Africa
- 5.2.5. South America
- 5.1. Market Analysis, Insights and Forecast - by Technology
- 6. North America Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 6.1. Market Analysis, Insights and Forecast - by Technology
- 6.1.1. Physical
- 6.1.2. Thermal
- 6.1.3. Biological
- 6.1. Market Analysis, Insights and Forecast - by Technology
- 7. Asia Pacific Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 7.1. Market Analysis, Insights and Forecast - by Technology
- 7.1.1. Physical
- 7.1.2. Thermal
- 7.1.3. Biological
- 7.1. Market Analysis, Insights and Forecast - by Technology
- 8. Europe Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 8.1. Market Analysis, Insights and Forecast - by Technology
- 8.1.1. Physical
- 8.1.2. Thermal
- 8.1.3. Biological
- 8.1. Market Analysis, Insights and Forecast - by Technology
- 9. Middle East and Africa Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 9.1. Market Analysis, Insights and Forecast - by Technology
- 9.1.1. Physical
- 9.1.2. Thermal
- 9.1.3. Biological
- 9.1. Market Analysis, Insights and Forecast - by Technology
- 10. South America Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 10.1. Market Analysis, Insights and Forecast - by Technology
- 10.1.1. Physical
- 10.1.2. Thermal
- 10.1.3. Biological
- 10.1. Market Analysis, Insights and Forecast - by Technology
- 11. North America Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 11.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 11.1.1 United States
- 11.1.2 Canada
- 11.1.3 Mexico
- 12. Europe Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 12.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 12.1.1 Germany
- 12.1.2 United Kingdom
- 12.1.3 France
- 12.1.4 Spain
- 12.1.5 Italy
- 12.1.6 Spain
- 12.1.7 Belgium
- 12.1.8 Netherland
- 12.1.9 Nordics
- 12.1.10 Rest of Europe
- 13. Asia Pacific Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 13.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 13.1.1 China
- 13.1.2 Japan
- 13.1.3 India
- 13.1.4 South Korea
- 13.1.5 Southeast Asia
- 13.1.6 Australia
- 13.1.7 Indonesia
- 13.1.8 Phillipes
- 13.1.9 Singapore
- 13.1.10 Thailandc
- 13.1.11 Rest of Asia Pacific
- 14. South America Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 14.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 14.1.1 Brazil
- 14.1.2 Argentina
- 14.1.3 Peru
- 14.1.4 Chile
- 14.1.5 Colombia
- 14.1.6 Ecuador
- 14.1.7 Venezuela
- 14.1.8 Rest of South America
- 15. MEA Waste to Energy Industry Analysis, Insights and Forecast, 2019-2031
- 15.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 15.1.1 United Arab Emirates
- 15.1.2 Saudi Arabia
- 15.1.3 South Africa
- 15.1.4 Rest of Middle East and Africa
- 16. Competitive Analysis
- 16.1. Global Market Share Analysis 2024
- 16.2. Company Profiles
- 16.2.1 Covanta Holding Corp
- 16.2.1.1. Overview
- 16.2.1.2. Products
- 16.2.1.3. SWOT Analysis
- 16.2.1.4. Recent Developments
- 16.2.1.5. Financials (Based on Availability)
- 16.2.2 A2A SpA
- 16.2.2.1. Overview
- 16.2.2.2. Products
- 16.2.2.3. SWOT Analysis
- 16.2.2.4. Recent Developments
- 16.2.2.5. Financials (Based on Availability)
- 16.2.3 China Everbright Group
- 16.2.3.1. Overview
- 16.2.3.2. Products
- 16.2.3.3. SWOT Analysis
- 16.2.3.4. Recent Developments
- 16.2.3.5. Financials (Based on Availability)
- 16.2.4 Wheelabrator Technologies Holdings Inc
- 16.2.4.1. Overview
- 16.2.4.2. Products
- 16.2.4.3. SWOT Analysis
- 16.2.4.4. Recent Developments
- 16.2.4.5. Financials (Based on Availability)
- 16.2.5 Martin GmbH
- 16.2.5.1. Overview
- 16.2.5.2. Products
- 16.2.5.3. SWOT Analysis
- 16.2.5.4. Recent Developments
- 16.2.5.5. Financials (Based on Availability)
- 16.2.6 Hitachi Zosen Corp
- 16.2.6.1. Overview
- 16.2.6.2. Products
- 16.2.6.3. SWOT Analysis
- 16.2.6.4. Recent Developments
- 16.2.6.5. Financials (Based on Availability)
- 16.2.7 Suez Group
- 16.2.7.1. Overview
- 16.2.7.2. Products
- 16.2.7.3. SWOT Analysis
- 16.2.7.4. Recent Developments
- 16.2.7.5. Financials (Based on Availability)
- 16.2.8 China Jinjiang Environment Holding Co Ltd
- 16.2.8.1. Overview
- 16.2.8.2. Products
- 16.2.8.3. SWOT Analysis
- 16.2.8.4. Recent Developments
- 16.2.8.5. Financials (Based on Availability)
- 16.2.9 Veolia Environnement SA
- 16.2.9.1. Overview
- 16.2.9.2. Products
- 16.2.9.3. SWOT Analysis
- 16.2.9.4. Recent Developments
- 16.2.9.5. Financials (Based on Availability)
- 16.2.10 Waste Management Inc
- 16.2.10.1. Overview
- 16.2.10.2. Products
- 16.2.10.3. SWOT Analysis
- 16.2.10.4. Recent Developments
- 16.2.10.5. Financials (Based on Availability)
- 16.2.11 Babcock & Wilcox Enterprises Inc
- 16.2.11.1. Overview
- 16.2.11.2. Products
- 16.2.11.3. SWOT Analysis
- 16.2.11.4. Recent Developments
- 16.2.11.5. Financials (Based on Availability)
- 16.2.12 Xcel Energy Inc
- 16.2.12.1. Overview
- 16.2.12.2. Products
- 16.2.12.3. SWOT Analysis
- 16.2.12.4. Recent Developments
- 16.2.12.5. Financials (Based on Availability)
- 16.2.13 MVV Energie AG
- 16.2.13.1. Overview
- 16.2.13.2. Products
- 16.2.13.3. SWOT Analysis
- 16.2.13.4. Recent Developments
- 16.2.13.5. Financials (Based on Availability)
- 16.2.14 Mitsubishi Heavy Industries Ltd
- 16.2.14.1. Overview
- 16.2.14.2. Products
- 16.2.14.3. SWOT Analysis
- 16.2.14.4. Recent Developments
- 16.2.14.5. Financials (Based on Availability)
- 16.2.1 Covanta Holding Corp
List of Figures
- Figure 1: Global Waste to Energy Industry Revenue Breakdown (Million, %) by Region 2024 & 2032
- Figure 2: Global Waste to Energy Industry Volume Breakdown (Gigawatt, %) by Region 2024 & 2032
- Figure 3: North America Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 4: North America Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 5: North America Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 6: North America Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
- Figure 7: Europe Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 8: Europe Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 9: Europe Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 10: Europe Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
- Figure 11: Asia Pacific Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 12: Asia Pacific Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 13: Asia Pacific Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 14: Asia Pacific Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
- Figure 15: South America Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 16: South America Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 17: South America Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 18: South America Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
- Figure 19: MEA Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 20: MEA Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 21: MEA Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 22: MEA Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
- Figure 23: North America Waste to Energy Industry Revenue (Million), by Technology 2024 & 2032
- Figure 24: North America Waste to Energy Industry Volume (Gigawatt), by Technology 2024 & 2032
- Figure 25: North America Waste to Energy Industry Revenue Share (%), by Technology 2024 & 2032
- Figure 26: North America Waste to Energy Industry Volume Share (%), by Technology 2024 & 2032
- Figure 27: North America Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 28: North America Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 29: North America Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 30: North America Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
- Figure 31: Asia Pacific Waste to Energy Industry Revenue (Million), by Technology 2024 & 2032
- Figure 32: Asia Pacific Waste to Energy Industry Volume (Gigawatt), by Technology 2024 & 2032
- Figure 33: Asia Pacific Waste to Energy Industry Revenue Share (%), by Technology 2024 & 2032
- Figure 34: Asia Pacific Waste to Energy Industry Volume Share (%), by Technology 2024 & 2032
- Figure 35: Asia Pacific Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 36: Asia Pacific Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 37: Asia Pacific Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 38: Asia Pacific Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
- Figure 39: Europe Waste to Energy Industry Revenue (Million), by Technology 2024 & 2032
- Figure 40: Europe Waste to Energy Industry Volume (Gigawatt), by Technology 2024 & 2032
- Figure 41: Europe Waste to Energy Industry Revenue Share (%), by Technology 2024 & 2032
- Figure 42: Europe Waste to Energy Industry Volume Share (%), by Technology 2024 & 2032
- Figure 43: Europe Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 44: Europe Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 45: Europe Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 46: Europe Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
- Figure 47: Middle East and Africa Waste to Energy Industry Revenue (Million), by Technology 2024 & 2032
- Figure 48: Middle East and Africa Waste to Energy Industry Volume (Gigawatt), by Technology 2024 & 2032
- Figure 49: Middle East and Africa Waste to Energy Industry Revenue Share (%), by Technology 2024 & 2032
- Figure 50: Middle East and Africa Waste to Energy Industry Volume Share (%), by Technology 2024 & 2032
- Figure 51: Middle East and Africa Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 52: Middle East and Africa Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 53: Middle East and Africa Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 54: Middle East and Africa Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
- Figure 55: South America Waste to Energy Industry Revenue (Million), by Technology 2024 & 2032
- Figure 56: South America Waste to Energy Industry Volume (Gigawatt), by Technology 2024 & 2032
- Figure 57: South America Waste to Energy Industry Revenue Share (%), by Technology 2024 & 2032
- Figure 58: South America Waste to Energy Industry Volume Share (%), by Technology 2024 & 2032
- Figure 59: South America Waste to Energy Industry Revenue (Million), by Country 2024 & 2032
- Figure 60: South America Waste to Energy Industry Volume (Gigawatt), by Country 2024 & 2032
- Figure 61: South America Waste to Energy Industry Revenue Share (%), by Country 2024 & 2032
- Figure 62: South America Waste to Energy Industry Volume Share (%), by Country 2024 & 2032
List of Tables
- Table 1: Global Waste to Energy Industry Revenue Million Forecast, by Region 2019 & 2032
- Table 2: Global Waste to Energy Industry Volume Gigawatt Forecast, by Region 2019 & 2032
- Table 3: Global Waste to Energy Industry Revenue Million Forecast, by Technology 2019 & 2032
- Table 4: Global Waste to Energy Industry Volume Gigawatt Forecast, by Technology 2019 & 2032
- Table 5: Global Waste to Energy Industry Revenue Million Forecast, by Region 2019 & 2032
- Table 6: Global Waste to Energy Industry Volume Gigawatt Forecast, by Region 2019 & 2032
- Table 7: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 8: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 9: United States Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 10: United States Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 11: Canada Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 12: Canada Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 13: Mexico Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 14: Mexico Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 15: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 16: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 17: Germany Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 18: Germany Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 19: United Kingdom Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 20: United Kingdom Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 21: France Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 22: France Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 23: Spain Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 24: Spain Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 25: Italy Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 26: Italy Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 27: Spain Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 28: Spain Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 29: Belgium Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 30: Belgium Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 31: Netherland Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 32: Netherland Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 33: Nordics Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 34: Nordics Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 35: Rest of Europe Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 36: Rest of Europe Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 37: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 38: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 39: China Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 40: China Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 41: Japan Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 42: Japan Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 43: India Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 44: India Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 45: South Korea Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 46: South Korea Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 47: Southeast Asia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 48: Southeast Asia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 49: Australia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 50: Australia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 51: Indonesia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 52: Indonesia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 53: Phillipes Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 54: Phillipes Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 55: Singapore Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 56: Singapore Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 57: Thailandc Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 58: Thailandc Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 59: Rest of Asia Pacific Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 60: Rest of Asia Pacific Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 61: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 62: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 63: Brazil Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 64: Brazil Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 65: Argentina Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 66: Argentina Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 67: Peru Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 68: Peru Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 69: Chile Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 70: Chile Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 71: Colombia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 72: Colombia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 73: Ecuador Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 74: Ecuador Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 75: Venezuela Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 76: Venezuela Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 77: Rest of South America Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 78: Rest of South America Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 79: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 80: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 81: United Arab Emirates Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 82: United Arab Emirates Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 83: Saudi Arabia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 84: Saudi Arabia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 85: South Africa Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 86: South Africa Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 87: Rest of Middle East and Africa Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 88: Rest of Middle East and Africa Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 89: Global Waste to Energy Industry Revenue Million Forecast, by Technology 2019 & 2032
- Table 90: Global Waste to Energy Industry Volume Gigawatt Forecast, by Technology 2019 & 2032
- Table 91: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 92: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 93: United States Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 94: United States Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 95: Canada Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 96: Canada Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 97: Rest of North America Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 98: Rest of North America Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 99: Global Waste to Energy Industry Revenue Million Forecast, by Technology 2019 & 2032
- Table 100: Global Waste to Energy Industry Volume Gigawatt Forecast, by Technology 2019 & 2032
- Table 101: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 102: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 103: China Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 104: China Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 105: India Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 106: India Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 107: Japan Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 108: Japan Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 109: Malaysia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 110: Malaysia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 111: Thailand Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 112: Thailand Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 113: Indonesia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 114: Indonesia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 115: Vietnam Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 116: Vietnam Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 117: Rest of Asia Pacific Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 118: Rest of Asia Pacific Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 119: Global Waste to Energy Industry Revenue Million Forecast, by Technology 2019 & 2032
- Table 120: Global Waste to Energy Industry Volume Gigawatt Forecast, by Technology 2019 & 2032
- Table 121: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 122: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 123: Spain Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 124: Spain Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 125: Nordic Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 126: Nordic Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 127: United Kingdom Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 128: United Kingdom Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 129: Russia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 130: Russia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 131: Turkey Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 132: Turkey Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 133: Germany Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 134: Germany Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 135: Italy Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 136: Italy Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 137: Rest of Europe Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 138: Rest of Europe Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 139: Global Waste to Energy Industry Revenue Million Forecast, by Technology 2019 & 2032
- Table 140: Global Waste to Energy Industry Volume Gigawatt Forecast, by Technology 2019 & 2032
- Table 141: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 142: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 143: United Arab Emirates Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 144: United Arab Emirates Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 145: Saudi Arabia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 146: Saudi Arabia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 147: South Africa Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 148: South Africa Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 149: Nigeria Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 150: Nigeria Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 151: Qatar Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 152: Qatar Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 153: Egypt Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 154: Egypt Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 155: Rest of Middle East and Africa Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 156: Rest of Middle East and Africa Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 157: Global Waste to Energy Industry Revenue Million Forecast, by Technology 2019 & 2032
- Table 158: Global Waste to Energy Industry Volume Gigawatt Forecast, by Technology 2019 & 2032
- Table 159: Global Waste to Energy Industry Revenue Million Forecast, by Country 2019 & 2032
- Table 160: Global Waste to Energy Industry Volume Gigawatt Forecast, by Country 2019 & 2032
- Table 161: Brazil Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 162: Brazil Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 163: Argentina Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 164: Argentina Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 165: Colombia Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 166: Colombia Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
- Table 167: Rest of South America Waste to Energy Industry Revenue (Million) Forecast, by Application 2019 & 2032
- Table 168: Rest of South America Waste to Energy Industry Volume (Gigawatt) Forecast, by Application 2019 & 2032
Frequently Asked Questions
1. What is the projected Compound Annual Growth Rate (CAGR) of the Waste to Energy Industry?
The projected CAGR is approximately 11.22%.
2. Which companies are prominent players in the Waste to Energy Industry?
Key companies in the market include Covanta Holding Corp, A2A SpA, China Everbright Group, Wheelabrator Technologies Holdings Inc, Martin GmbH, Hitachi Zosen Corp, Suez Group, China Jinjiang Environment Holding Co Ltd, Veolia Environnement SA, Waste Management Inc, Babcock & Wilcox Enterprises Inc, Xcel Energy Inc, MVV Energie AG, Mitsubishi Heavy Industries Ltd.
3. What are the main segments of the Waste to Energy Industry?
The market segments include Technology.
4. Can you provide details about the market size?
The market size is estimated to be USD 38.37 Million as of 2022.
5. What are some drivers contributing to market growth?
4.; Increasing Amount of Waste Generation. Growing Concern for Waste Management to Meet the Needs for Sustainable Urban Living4.; Increasing Focus on Non-fossil Fuel Sources of Energy.
6. What are the notable trends driving market growth?
Thermal-based Waste-to-Energy Segment to Dominate the Market.
7. Are there any restraints impacting market growth?
4.; Expensive Nature of Incinerators.
8. Can you provide examples of recent developments in the market?
April 2023: Egypt signed a USD 120 million contract to design, develop, own, and manage the country's first solid waste-to-electricity facility. The contract was signed by the Giza governorate and a partnership consisting of Renergy Egypt and the National Authority for Military Production. As part of Egypt Vision 2030, the Abou Rawash, Giza plant would convert 1,200 metric tons of household solid waste per day to power.
9. What pricing options are available for accessing the report?
Pricing options include single-user, multi-user, and enterprise licenses priced at USD 4750, USD 5250, and USD 8750 respectively.
10. Is the market size provided in terms of value or volume?
The market size is provided in terms of value, measured in Million and volume, measured in Gigawatt.
11. Are there any specific market keywords associated with the report?
Yes, the market keyword associated with the report is "Waste to Energy Industry," which aids in identifying and referencing the specific market segment covered.
12. How do I determine which pricing option suits my needs best?
The pricing options vary based on user requirements and access needs. Individual users may opt for single-user licenses, while businesses requiring broader access may choose multi-user or enterprise licenses for cost-effective access to the report.
13. Are there any additional resources or data provided in the Waste to Energy Industry report?
While the report offers comprehensive insights, it's advisable to review the specific contents or supplementary materials provided to ascertain if additional resources or data are available.
14. How can I stay updated on further developments or reports in the Waste to Energy Industry?
To stay informed about further developments, trends, and reports in the Waste to Energy Industry, consider subscribing to industry newsletters, following relevant companies and organizations, or regularly checking reputable industry news sources and publications.
Methodology
Step 1 - Identification of Relevant Samples Size from Population Database



Step 2 - Approaches for Defining Global Market Size (Value, Volume* & Price*)

Note*: In applicable scenarios
Step 3 - Data Sources
Primary Research
- Web Analytics
- Survey Reports
- Research Institute
- Latest Research Reports
- Opinion Leaders
Secondary Research
- Annual Reports
- White Paper
- Latest Press Release
- Industry Association
- Paid Database
- Investor Presentations

Step 4 - Data Triangulation
Involves using different sources of information in order to increase the validity of a study
These sources are likely to be stakeholders in a program - participants, other researchers, program staff, other community members, and so on.
Then we put all data in single framework & apply various statistical tools to find out the dynamic on the market.
During the analysis stage, feedback from the stakeholder groups would be compared to determine areas of agreement as well as areas of divergence